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a b s t r a c t

The time and height at the peak maximum are key parameters to describe a chromatographic peak with
prediction or optimization purposes, or in the qualitative/quantitative analysis of samples. Three dif-
ferent approaches to estimate these parameters, using the experimental points in the peak maximum
region, are here described and compared. The approaches are based on the reliable description of the
peak profile using a modified Gaussian model with a parabolic variance (PVMG). In the first approach,
non-linear fitting of the chromatographic data to the PVMG model is carried out to obtain the time
iquid chromatography
eak modelling
odified Gaussian model

stimation of peak parameters
ime and height at the peak maximum

and height at the peak maximum (Approach I). In the other two approaches, the PVMG model is lin-
earized to carry out a linear fitting. In each case, the optimal number of processed points was assessed.
The three approaches yielded highly satisfactory results, being Approach I the best in terms of accu-
racy and robustness. The assessment of the accuracy in the estimations was carried out using simulated
peaks. These peaks were built with the parameters obtained from real peaks for several probe com-
pounds eluted under reversed-phase liquid chromatographic (RPLC) conditions, to which noise was
added.
. Introduction

The accurate description of chromatographic peaks is an impor-
ant step in the treatment of data with prediction or optimization
urposes, or in the qualitative/quantitative analysis of samples,
ither for isolated or overlapped peaks, which are far more
emanding. The most important parameters that gather all peak

nformation (position and shape) are the time and height at the
eak maximum, and the left and right half-widths. The peak half-
idths (instead of the peak width) are essential to make a reliable

stimation of the efficiency for asymmetrical peaks. It should be
oticed that the accuracy in the measurement of the half-widths is
ecreased at increasing peak width and asymmetry, and depends
n the accurate knowledge of the time and height at the peak max-
mum.

The estimation of the time and height at the peak maximum
as been traditionally carried out through a polynomial fitting of
he experimental points in the region close to the peak maximum

1,2]. This method is not only applied in chromatography, but also
n other fields as spectroscopy, where a peak (or band) should be
haracterized [3]. Polynomials of different degrees have been used
or the fittings. In other more complex approaches, the whole peak
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or the region around the peak maximum is non-linearly fitted to a
function describing the peak profile [4].

A number of theoretical and empirical mathematical functions
have been reported for the description of chromatographic peak
profiles [5–12]. However, most functions found in the literature
are not sufficiently accurate. The elution profiles of symmetrical
and non-overloaded chromatographic peaks are well described by
the Gaussian model. Non-ideal peaks (either tailing or fronting)
are, however, quite common in practice. In this concern, polyno-
mial modified Gaussian models (where the standard deviation or
the variance changes with the distance to the peak maximum),
have demonstrated a large flexibility and accuracy in the descrip-
tion of chromatographic peaks in a wide range of asymmetries
[6,9–12].

The polynomially modified Gaussian model (PMG) (a Gaus-
sian model with a polynomial standard deviation), which was
initially proposed to describe non-ideal peaks, had associated a
baseline that increased out of the peak region [6,9]. This prob-
lem was first solved by setting the height at each side of the
peak region to the respective minimal value [6]. Another practi-
cal solution was a mixed exponential-PMG function, obtained by

adding two exponential decays at both sides of the PMG peak at
10% height, hold to the restriction that the slopes of the Gaussian
and exponential functions at the connecting points should coin-
cide [11]. Two new modified Gaussian models including a parabolic
variance (PVMG model) [12], or a combined parabolic-Lorentzian
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http://www.sciencedirect.com/science/journal/00219673
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unction (PLMG model) [10], were proposed. In the latter model,
he parabola accounted for the non-Gaussian shaped peak, whereas
he Lorentzian function cancelled the variance growth out of the
lution region. This model allowed the accurate description of a
ide range of peaks (even with a large positive and/or negative

kewness), improved with respect to other models reported in the
iterature.

In this work, we describe and compare three different
pproaches to estimate the time and height at the peak maximum
rom the information given by the experimental points in the region
lose to the peak maximum. The approaches are based on the reli-
ble description of the peak profile using the PVMG model. The
roper evaluation of the accuracy in the estimation of time and
eight at the peak maximum was carried out based on simulated
eaks. These peaks were built with the parameters obtained from
eal peaks for several probe compounds, eluted under reversed-
hase liquid chromatographic (RPLC) conditions, to which noise
as added.

. Experimental

.1. Reagents

Mobile phases were prepared with acetonitrile (Scharlab,
arcelona, Spain) and water. The pH was buffered at pH 3 with
.1 M citric acid (Panreac, Barcelona) and NaOH (Scharlab). The
lectrode was calibrated using aqueous buffers, and the pH of
he mobile phases measured after the addition of the organic
olvent.

The probe compounds were the diuretics benzthiazide,
umetanide (Sigma, St. Louis, MO, USA), bendroflumethiazide
Davur, Madrid, Spain), and xipamide (Lacer, Barcelona), and the
-blocker alprenolol (Ciba-Geigy, Barcelona). The compounds,
xcept those from Sigma, were kindly donated by the pharmaceu-
ical laboratories. The drugs were dissolved in a few millilitres of
cetonitrile, assisted by an ultrasonic bath, and diluted with water.
he concentrations of the stock and injected solutions were 100 and
0 �g/mL, respectively. The solutions were stored in the darkness
t 4 ◦C.

Nanopure water (Barnstead, Sybron, Boston, MA, USA) was used
hroughout. The mobile phases and probe compound solutions
ere filtered through 0.45 �m Nylon membranes with a diame-

er of 47 mm (Magna) and 17 mm (Cameo), respectively (Osmonics,
erental, Belgium).

.2. Apparatus, software and columns

The HPLC system (Agilent, Series 1100, Waldbronn, Germany)
onsisted of an isocratic pump, an autosampler, a UV–visible
etector, and a temperature controller. The signals were mon-

tored at 254 nm. Data acquisition was carried out with an
PChemStation (Agilent). The mathematical treatment was imple-
ented in Visual Basic 6.0 and Excel XP (Microsoft, Seattle, WA,
SA).

Three chromatographic columns were used: a Zorbax SB
18 (Agilent, 150 mm × 4.6 mm I.D. and 5 �m particle size), an
Terra MS C18 (Waters, MA, USA, 150 mm × 4.6 mm I.D. and
�m particle size), protected both with a similar C18 guard
olumn (30 mm × 4.0 mm I.D. and 5 �m particle size), and a
hromolith Performance RP-18e (Merck, Darmstadt, Germany,

00 mm × 4.6 mm I.D.), preceded by a Chromolith guard col-
mn RP-18e (5.0 mm × 4.6 mm I.D.). The probe compounds were

njected after the guard columns. The flow-rate was 1 mL/min and
he injected volume 5 �L, in all cases. Triplicate injections were

ade.
r. A 1218 (2011) 1385–1392

3. Theory

3.1. Description of chromatographic peaks

The most convenient way to assess the performance of differ-
ent approaches for the characterization of chromatographic peaks
is to apply them to peaks with known parameters, built by simula-
tion from mathematical models. The simulated peaks should fit as
much as possible the real peaks. This is the methodology we have
followed. For this purpose, we selected the experimental peaks of
several probe compounds that showed diverse efficiency and asym-
metry. We first fitted each elution profile to a peak model. Based on
the parameters in the fitted equations, we built peaks with known
profiles, to which noise was added.

We selected the PLMG model to fit and simulate the chromato-
graphic peaks, due to its good performance. In this way, we could
work with highly reliable peaks, with known parameters. The PLMG
model has demonstrated to give better fittings than other models
with different mathematical basis [10]. It has also the advantage
that the model parameters are related to peak properties as the
skewness and kurtosis.

The PLMG model is described as follows:

h(t) = H0 exp

[
−1

2
(t − tmax)2

�2

]
(1)

where

�2 = �2
0 + m

(t − tmax + d)2

1 + ((t − tmax + r)2/w2)
(2)

t being the time, h(t) the peak height at different times, H0 the height
at the maximum, tmax the time at the peak maximum, and � the
standard deviation (which is a measurement of the peak width).
The PLMG model combines a parabolic and a Lorentzian function
to describe the variance profile, using the parameters �0, m and d
for the parabolic function, and r and w for the Lorentzian function
(m describes the parabola curvature and d locates its minimum; r
locates the Lorentzian maximum and w accounts for its width). The
parabola has a minimum at t = tmax − d, and the Lorentzian function
a maximum at t = tmax − r. For tailed peaks, the minimum of the
parabola is located at times t < tmax (and therefore, d > 0), whereas
for fronted peaks, the minimum is found at times t > tmax (d < 0). The
curvature of the parabola, and consequently, the variance, increases
with m.

As commented, the approaches proposed in this work to obtain
the time and height at the peak maximum were based on an accu-
rate description of the peak profiles. For this purpose, we needed a
reliable peak model. However, the PLMG model had the disadvan-
tage of being too complex to be routinely applied to obtain the peak
parameters. It should be noted that it makes an accurate descrip-
tion of the whole peak region, including the baseline at both sides
of the peak. As we were interested in obtaining information associ-
ated only to the peak maximum region, we decided to eliminate the
Lorentzian function in the PLMG model, and use a Gaussian model
with a variance showing only a parabolic change with time (PVMG).
This simplified model gives good performance in relatively narrow
ranges along the peak elution [12]:

h(t) = H0 exp

[
−1

2
(t − tmax)2

�2
0 + m(t − tmax + d)2

]
(3)
For peaks containing equally spaced points (as is the case in peak
detection), the model can be re-written as follows:

h(t) = H0 exp

[
−a(ıi − ımax)2

1 + bıi + cı2
i

]
(4)



matogr. A 1218 (2011) 1385–1392 1387

w
w
(
p
t
a
a
(

3
m

a
w
m
t

h

3

(
c
u
o

3

t

y

I
t
t

T

y

A
o

y

s
n
i
t

˛

ˇ

�

�

Table 1
Summations used in Approaches IIa and IIb to calculate the coefficients in Eqs. (8)
and (9).

S2 = 2ı2

M∑
i=1

i2 Sy = y0 +
M∑

i=1

(y+i + y−i)

S4 = 2ı4

M∑
i=1

i4 S1y = ı

M∑
i=1

i(y+i − y−i)

S6 = 2ı6

M∑
i=1

i6 S2y = ı2

M∑
i=1

i2(y+i + y−i)

S8 = 2ı8

M∑
i=1

i8 S3y = ı3

M∑
i=1

i3(y+i − y−i)

S4y = ı4

M∑
i=1

i4(y+i + y−i)

ı is the time distance between adjacent experimental points.
i is an index that indicates the location of the peak points, with respect to the exper-
J.J. Baeza-Baeza et al. / J. Chro

here i is an index that indicates the location of the peak points
ith respect to the experimental point showing the highest signal

located at a time t0, for which i = 0), ıi is the distance between each
oint and the point at t0, and ımax = tmax − t0 (the distance between
he point at the peak maximum and t0). Note that since the peaks
re equally spaced, the distance between a given point and the point
t t0 will be a multiple of the distance between adjacent points
ıi = iı).

.2. Approaches to estimate the time and height at the peak
aximum

The three approaches developed to estimate the time and height
t the peak maximum are described below. All are based on Eq. (4),
hich gives an accurate description of the region around the peak
aximum. We have assayed also a simplified model, where the cı2

i
erm in Eq. (4) was dropped:

(t) = H0 exp

[
−a(ıi − ımax)2

1 + bıi

]
(5)

.2.1. Approaches Ia and Ib: non-linear fitting
The non-linear fittings of the chromatographic data to Eq. (4)

which will be called Approach Ia) and Eq. (5) (without the cı2
i

term,
alled Approach Ib) were first assayed. The fittings were performed
sing the Powell method [13], but it should be noted that the Solver
ption of the Excel’s spreadsheet can be used with good results.

.2.2. Approaches IIa and IIb: polynomial fitting
We also considered the fitting of the data to a polynomial. For

his purpose, Eq. (4) was rewritten in the logarithmic form:

= ln h(t) = ln H0 − a(ıi − ımax)2

1 + bıi + cı2
i

(6)

f the bıi and cı2
i

terms in Eq. (6) are assumed to be sufficiently small,
he expression can be approximated to a Taylor series, according
o:

1
1 + x

≈ 1 − x (7)

hus:

= ln h(t) ≈ ln H0 − a(ıi − ımax)2(1 − bıi − cı2
i )

= ˛ + ˇıi + �ı2
i + �ı3

i + ωı4
i (8)

The fourth degree polynomial in Eq. (8) constitutes the basis of
pproach IIa. Approach IIb is based on the third degree polynomial
btained by dropping the ωı4

i
term:

= ln h(t) = ˛ + ˇıi + �ı2
i + �ı3

i (9)

We will first explain Approach IIb, which is simpler. For equally
paced experimental points along the peak elution, and the same
umber of points (M) at both sides of the experimental point show-

ng the maximal height in the peak (at t0), the parameters of the
hird degree polynomial are given by:

= S4Sy − S2S2y

NS4 − S2
2

(10)

= S6S1y − S4S3y

S2S6 − S2
4

(11)
= NS2y − S2Sy

NS4 − S2
2

(12)

= S2S3y − S4S1y

S2S6 − S2
4

(13)
imental point showing the highest signal, for which i = 0.
M is the number of points at the right or left of the point for i = 0.
y+i and y−i are the logarithm of the signals (log hi and log h−i) for points at the right
and left of the point for i = 0.

where N = 2M + 1.
The summation terms in Eqs. (10)–(13) are given in Table 1.

The parameter ımax (see Eq. (4) for meaning) can be obtained con-
sidering that, at the peak maximum, the derivative of Eq. (9) is
null:

ˇ + 2�ımax + 3�ı2
max = 0 (14)

For symmetrical or nearly symmetrical peaks (for which the
coefficient � ≈ 0), the classical solution of the second degree equa-
tion can be problematic. Since, by definition, ımax will be always
small, a better solution is to calculate this parameter considering a
Taylor approximation of Eq. (14):

ımax = −ˇ

2� + 3�ımax
≈ −ˇ

2�
+ 3ˇ�

4�2
ımax (15)

From this equation:

ımax ≈ −2ˇ�

4�2 − 3ˇ�
(16)

We have applied this solution to all chromatographic peaks
examined in this work, independently of their asymmetry degree.
The time and height at the peak maximum were calculated as:

tmax = t0 + ımax (17)

H0 = e˛+ˇımax+�ı2
max+�ı3

max (18)

For Approach Ia, the parameters of the fourth degree polynomial
(Eq. (8)) are given by:

˛ = S4S8Sy + S4S6S2y + S2S6S4y − S2
4S4y − S2

6Sy − S2S8S2y

NS4S8 + 2S2S4S6 − S3
4 − NS2

6 − S2
2S8

(19)

ˇ = S6S1y − S4S3y

S2S6 − S2
4

(20)

� = NS8S2y + S4S6Sy + S2S4S4y − S2
4S2y − NS6S4y − S2S8Sy

NS4S8 + 2S2S4S6 − S3
4 − NS2

6 − S2
2S8

(21)

S S − S S

� = 2 3y 4 1y

S2S6 − S2
4

(22)

ω = NS4S4y + S2S6Sy + S2S4S2y − S2
4Sy − NS6S2y − S2

2S4y

NS4S8 + 2S2S4S6 − S3
4 − NS2

6 − S2
2S8

(23)
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Table 2
Summations used in Approaches IIIa and IIIb to calculate the coefficients in Eq. (29).

S1 = 2ı2

M∑
i=1

i S1D = ı

2M∑
i=1

i(y+i − y−i) S2S2 = ı2

2M∑
i=1

i2(y+i + y−i)
2

S2 = ı2

2M∑
i=1

i2 S2S = ı2

2M∑
i=1

i2(y+i + y−i) S2D2 = ı2

2M∑
i=1

i2(y+i − y−i)
2

S3 = 2ı4

M∑
i=1

i3 S3D = ı3

2M∑
i=1

i3(y+i − y−i) S1SD = ı

2M∑
i=1

i(y+i + y−i)(y+i − y−i)

S−1 = 1 + 2

M∑
i=1

(i)−1 S4D2 = ı4

2M∑
i=1

i4(y+i − y−i)
2 S2SD = ı2

2M∑
i=1

i2(y+i + y−i)(y+i − y−i)

Sz = ı

M∑
i=1

(zi − z−i) S1z = ı2

M∑
i=1

i(zi + z−i) S3SD = ı3

2M∑
i=1

i3(y+i + y−i)(y+i − y−i)

S−1z = y0 +
M∑

zi+z−i
i

z
O

(

ˇ

(

ı

w

r

a

r

t

H

3

a
o
p

z

B
ı

y

I
s
i

b

i=1

i = (1 + bıi + cı2
i
)yi .

ther details are given in the text or Table 1.

The peak maximum will be obtained from the derivative of Eq.
8) set to zero:

+ 2�ımax + 3�ı2
max + 4ωı3

max = 0 (24)

After applying a treatment similar to that used for Approach IIb
Eqs. (15) and (16)), the following is obtained:

max ≈ r1

1 + (2ωr2
1/�)

(25)

here

1 = r0

1 + (3�r0/2�)
(26)

nd

0 = − ˇ

2�
(27)

Finally, the retention time is calculated according to Eq. (17) and
he peak height as:

0 = e˛+ˇımax+�ı2
max+�ı3

max+ωı4
max (28)

.2.3. Approaches IIIa and IIIb: sequential fitting
We developed a third approach to obtain the time and height

t the peak maximum from Eq. (4), using a linear fitting, but with-
ut making an approximation to a Taylor series (Eq. (7)). For this
urpose, Eq. (6) was re-written as follows:

= (1 + bıi + cı2
i ) ln h(t) = (1 + bıi + cı2

i ) ln H0 − a(ıi − ımax)2

= ˛ + ˇıi + �ı2
i (29)

y subtracting Eq. (29) for points yi and y−i, taking into account that
−i = −ıi:

i − y−i = 2ˇıi − bıi(yi + y−i) − cı2
i (yi − y−i) (30)

For Approach IIIa, the cı2
i

term in Eqs. (29) and (30) was dropped.
n this case, the b coefficient can be obtained from Eq. (30) through a

imple linear least-squares fitting (the summation terms are given
n Table 2):

= S2SS1D − S2S1SD

S2S2S2 − S2
2S

(31)
Once b is known, the chromatographic data can be fitted to Eq.
(29) to obtain the coefficients ˛, ˇ and � as follows:

˛ = S3S−1z − S1S1z

S3S−1 − S2
1

(32)

ˇ = Sz

S1
(33)

� = S−1S1z − S1S−1z

S3S−1 − S2
1

(34)

The summation terms in Eqs. (32)–(34) can be also found in
Table 2. For the fittings, the experimental points were weighted to
increase the importance of those close to the peak maximum. The
weights were w = 1/

∣∣i∣∣, except for i = 0, for which w = 1.
The information that allowed obtaining the time at the peak

maximum was calculated from the derivative of:

y = ln h(t) = ˛ + ˇıi + �ı2
i

1 + bıi + cı2
i

(35)

obtained from Eq. (29), set to zero:

ımax = r

1 + (br/2)
(36)

where

r = ˛b − ˇ

2�
(37)

The time at the peak maximum was calculated according to Eq.
(17) and the height from:

H0 = e(˛+ˇımax+�ı2
max)/(1+bımax) (38)

For Approach IIIa, based on Eqs. (29) and (30) including the cı2
i

term:

b = −
S2S1SDS4D2 + S1DS3SDS3D + S3DS2SS2D2 − S1SDS2

3D
− S2SS1DS4D2 − S2S2D2S3SD

S2S2S2S4D2 + S2SS3SDS3D + S3DS2SS3SD − S2S2S2
3D

− S2
2S

S4D2 − S2S2
3SD

(39)

c = −
S2S2S2S2D2 + S2SS1SDS3D + S1DS2SS3SD − S1DS2S2S3D − S2D2S2

2S
− S2S3SDS1SD

2 2 2
S2S2S2S4D2 + S2SS3SDS3D + S3DS2SS3SD − S2S2S3D
− S2S

S4D2 − S2S3SD

(40)

ımax = r

1 + r((b� − cˇ)/(2� − 2c˛))
(41)
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ig. 1. Experimental (♦) and fitted (solid line) chromatographic peaks, according
endroflumethiazide (peak 4 in Table 3) and (c and d) benzthiazide (peak 6), eluted
eak height ratio of 0.6 were fitted.

here

= ˛b − ˇ

2� − 2c˛
(42)

nd

0 = e(˛+ˇımax+�ı2
max)/(1+bımax+cı2

max) (43)

The coefficients ˛, ˇ and � are calculated again according to Eqs.
32)–(34).

. Results and discussion
.1. Peak description and simulation

The experimental peaks for five probe compounds (alprenolol,
endroflumethiazide, benzthiazide, bumetanide and xipamide)

able 3
xperimental conditions used in the elution of the probe compounds, and peak half-widt

Peak number Compound Column Acetonitrile (%, v

1 Alprenolol Zorbax 45
2 Bendroflumethiazide Zorbax 35
3 Alprenolol Zorbax 35
4 Bendroflumethiazide Zorbax 30
5 Bumetanide Chromolith 35
6 Benzthiazide Zorbax 35
7 Benzthiazide XTerra 35
8 Xipamide Zorbax 35

a The peaks are ordered according to their asymmetry degree.
b Right (A10) and left (B10) half-widths, and asymmetry degree measured at 10% peak h
e PLMG (left, Eqs. (1) and (2)) and PVMG (right, Eq. (4)) models, for: (a and b)
and 40 ◦C, respectively. For the PVMG model, only the experimental points above a

were obtained for three columns and acetonitrile–water mobile
phases of diverse composition at 30 or 40 ◦C. The peaks showed
different widths and asymmetries (Table 3).

The peaks for bendroflumethiazide at 30 ◦C and benzthiazide at
40 ◦C are shown in Fig. 1. The experimental points and the fittings
according to the PLMG and PVMG models are depicted. As observed,
the PLMG model describes accurately the whole peak. It is thus the
ideal tool to simulate peaks including the baseline. The parameters
of the PLMG models and the accuracy of the fittings for eight exper-
imental peaks are given in Table 4. The fitting quality was measured
as the mean relative error calculated as:
εr (%) =
∑N

i=1

∣∣hi − ĥi

∣∣∑N
i=1

∣∣hi

∣∣ × 100 (44)

hs.a

/v) Temperature (◦C) A10
b (min) B10

b (min) B/A10
b

30 0.0579 0.1461 2.52
40 0.0602 0.1452 2.41
40 0.0783 0.1633 2.09
30 0.0751 0.1531 2.04
30 0.2136 0.3442 1.61
40 0.1651 0.2093 1.27
30 0.2040 0.2338 1.15
30 0.3255 0.3421 1.05

eight.
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Table 4
Parameters for the peaks indicated in Table 3 obtained from the fitting to the PLMG model (Eqs. (1) and (2)) of the whole experimental peak.

Peak numbera tR (min) H0 �0 (min) m d r w RE (%)b

1 2.105 1.791 0.02587 0.10153 0.08962 −0.05736 0.13652 0. 80
2 2.378 10.834 0.02787 0.11261 0.07169 −0.04988 0.15189 1.5
3 3.395 1.3847 0.02525 0.04626 0.20994 −0.02802 0.27026 0.69
4 2.739 7.4012 0.035 0.10507 0.07934 −0.03946 0.16603 1.12
5 10.958 9.075 0.09953 0.05426 0.21305 −0.45298 0.4616 0.69
6 8.182 4.4297 0.07684 0.03594 0.14441 0.2835 0.99324 0.19
7 8.738 3.034 0.09303 0.01649 0.37496 0.70659 0.98955 0.55
8 16.839 6.573 0.14843 0.04014 0.1372 1.049 1.05895 0.59

a See Table 3 for peak identity.
b Relative errors were calculated according to Eq. (44).

Table 5
Parameters for the peaks indicated in Table 3 obtained from the fitting to the PVMG model (Eq. (4)) of the region around the peak maximum (above 60% of peak height).

Peak numbera tR (min) H0 a b c RE (%)b

1 2.1041 1.7925 389.1 13.0 118.9 0.025
2 2.3785 10.893 409.6 12.0 128.5 0.065
3 3.3953 1.3818 179.2 7.74 1.36 0.047
4 2.7384 7.3645 277.4 8.73 76.9 0.030
5 10.958 9.0723 43.9 1.28 4.20 0.036
6 8.1822 4.4459 76.4 1.30 5.56 0.016

w
p
p

t
m
m
t
t
o
r

d
t
l
o
p
l
u
h
b

T
M

7 8.7387 3.0365
8 16.839 6.5724

a See Table 3 for peak identity.
b Relative errors were calculated according to Eq. (44).

here hi and ĥi are the experimental and predicted height for each
oint in the chromatogram and N is the number of experimental
oints. The mean relative fitting errors were always below 1.5%.

On the other hand, the simplified PVMG model fits accurately
he upper region of the peak (Fig. 1b and d). Table 5 shows the

odel parameters and the high accuracy of the fittings to the PVMG
odel for the eight experimental peaks. The fittings correspond to

he region above a peak ratio of 0.6. As observed, the mean rela-
ive errors were always below 0.1%. This demonstrates the validity
f the PVMG model to gather information about the parameters
elated to the peak maximum.

The parameters in Table 4 were used to obtain a reliable repro-
uction of chromatographic peaks with known time and height at
he peak maximum. The points that defined the peaks were simu-
ated to be equally spaced, with a distance between adjacent points
f ı = 0.004 min. In order to consider the effect of the changes in

eak location due to experimental factors, peaks with shifts in their

ocation of +0.002, +0.001, 0, −0.001 and −0.002 min were sim-
lated. Finally, noise (Gaussian random errors) was added to the
eight of each point with � = 0.005 (a value slightly larger than the
aseline noise measured in the experimental chromatograms). For

able 6
ean relative error (ppm) for the values of time and height at the peak maximum obtain

Peak height ratiob Ia IIa II

Time at the peak maximum
0.9 34 39
0.8 25 26
0.7 20 24
0.6 18 30
0.5 17 42
0.4 19 62
Peak height
0.9 420 423 3
0.8 294 324 2
0.7 273 299 3
0.6 241 285 4
0.5 237 331 5
0.4 250 437 3

a Mean errors for the set of probe compounds and conditions, considering 10 simulate
b The chromatographic data above the indicated peak height ratio were used to fit the
48.2 0.58 −0.74 0.076
22.1 0.16 0.51 0.033

each time shift, two peaks were simulated; hence, 10 peak simula-
tions were obtained to be treated with each approach.

4.2. Performance of the approaches

As commented, the approaches developed in this work are based
on the PVMG model, re-written according to Eq. (4). This model
describes a modified Gaussian curve with a parabolic variance,
where the coefficient a quantifies the width, whereas both b and c
are related to the peak asymmetry and kurtosis.

The peaks analyzed in this work have different asymmetry
degrees (Table 3). This is translated in more or less significant val-
ues for the b and c coefficients. For symmetrical peaks, b = c = 0. For
nearly symmetrical peaks, both coefficients are rather small (e.g.
see peaks 7 and 8 in Tables 3 and 5). For asymmetrical peaks, b and

c are significant, but depending on the c/b ratio, two types of peaks
can be recognized (see Table 5): type I (represented by peaks 1, 2
and 4), for which c is highly significant, and type II (peaks 3, 5 and
6), for which c is small. It could be thought that the cı2

i
term can be

dropped for type II peaks.

ed with the three proposed approaches.a

Ia Ib IIb IIIb

24 39 36 27
16 43 27 40
17 81 22 101
22 115 33 173
40 168 44 246
80 230 65 349

66 428 361 336
81 378 360 313
53 712 817 467
41 1048 1547 604
84 1637 2180 890
66 2402 3253 1330

d peaks for each compound.
peak model.
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Fig. 2. Mean relative errors in the prediction of the time and height at the peak
maximum for xipamide eluted at 30 ◦C (peak 8, B/A10 = 1.05), obtained by applying
the approaches that consider the cı2 term in Eq. (6): Ia (�), IIa (©) and IIIa (�), and
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Fig. 3. Mean relative errors in the prediction of the time and height at the peak

For the asymmetrical peaks (Figs. 3 and 4), Approaches IIa and
i
he simplified approaches: Ib (�), IIb (�) and IIIb (�). The results correspond to 10
imulated peaks (see text).

Figs. 2–4 depict the mean relative errors (expressed as ppm),
btained in the estimation of the time and height at the peak max-
mum, according to the different approaches, for the three types
f peaks (see Table 5): peak 8 (Fig. 2, xipamide at 30 ◦C), peak 3
Fig. 3, alprenolol at 40 ◦C), and peak 1 (Fig. 4, alprenolol at 30 ◦C).
n the figures, the approaches for Eq. (4) including the cı2

i
term

Approaches Ia, IIa and IIa, empty symbols), and the simplified

pproaches (Approaches Ib, IIb and IIb, full symbols) are compared.
he minimal number of points needed to perform the fittings is five
or the former approaches and four for the latter.
maximum for alprenolol eluted at 40 ◦C (peak 3, B/A10 = 2.09), obtained by applying
Approaches Ia (�), IIa (©), IIIa (�), Ib (�), IIb (�) and IIIb (�). Other details are given
in Fig. 2.

As observed, in general, the three approaches yielded rather
small errors, although with differences among them. Also, the
errors were significantly larger for the estimation of the peak
height. For symmetrical peaks (Fig. 2), Approaches a and b gave
similar values for the time at the peak maximum, but the drop of
the cı2

i
(Eq. (4)) or ωı4

i
(Eq. (8)) terms increased the errors in the

estimation of the peak height. The results were acceptable for a
wider range of peak ratios with regard to the asymmetrical peaks.
IIb gave similar results for the time at the peak maximum, but
it seems that the cı2

i
term is needed for the other two types of

approaches. On the other hand, the simplified approaches gave rise
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ig. 4. Mean relative errors in the prediction of the time and height at the peak
aximum for alprenolol eluted at 30 ◦C (peak 1, B/A10 = 2.52), obtained by applying
pproaches Ia (�), IIa (©), IIIa (�), Ib (�), IIb (�) and IIIb (�). Other details are given

n Fig. 2.

o good results when points close to the peak maximum were pro-
essed. When more points were taken for the fittings, the errors

ncreased since the peak was not well described. The approaches
hat included the cı2

i
term (Ia, IIa and IIIa), in general, gave excel-

ent results. They only failed when the number of points around
he maximum was too small (since a minimal number of points
as needed for the fittings), or when a too wide region was consid-

[

[

r. A 1218 (2011) 1385–1392

ered (the peak was no more well described by the PVMG model).
Approach Ia was the most robust, since it offered good results in a
wide time range around the peak maximum.

The mean relative errors for the estimation of the time and
height at the peak maximum, considering the set of eight peaks, are
given in Table 6. An increasing number of processed points were
assessed (above peak height ratios of 0.9–0.4). Approach Ia (the
non-linear fitting of Eq. (4)) showed clearly as the best: it offered
the smallest errors and was the most robust, since the errors were
maintained or even decreased when the time range width was
increased. We recommend using the points above a peak height
ratio of 0.6 for the fittings.

5. Conclusions

The time and height at the peak maximum can be estimated by
fitting the experimental points in a chromatographic peak to an
adequate model. Chromatographic peaks often do not follow the
ideal Gaussian behaviour. Therefore, they should be described with
models considering their skewness and kurtosis. We demonstrate
here that the PVMG model (Eq. (4)) describes different types of
peaks with high accuracy. This allows different approaches that
offer good estimations of the time and height at the peak maximum.

Three types of approaches have been considered, based on the
PVMG model: the non-linear fitting of the model (Approach I), or
the linear fitting after its linearization (Approaches II and III). The
non-linear fitting yields the best results in terms of accuracy and
robustness of the estimations. Approaches II and III, and Eq. (4)
without the cı2

i
term or Eq. (8) without the ωı4

i
term, are sim-

plifications that make the approaches less demanding in terms of
computing complexity. In this work, we detail the equations to
apply these approaches. It should be also noted that Approaches
Ia and Ib can be tackled with the Solver option in the Microsoft Excel
spreadsheet with accurate results.
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